Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.117
Filtrar
1.
Huan Jing Ke Xue ; 45(5): 2525-2536, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629518

RESUMO

To evaluate the spatial and temporal distribution characteristics of ambient ozone (O3) in the Beijing-Tianjin-Hebei (BTH) Region, the land use regression (LUR) model and random forest (RF) model were used to simulate the ambient O3 concentration from 2015 to 2020. Meanwhile, all-cause, cardiovascular, and respiratory mortalities as well as economic losses attributed to O3 were also estimated. The results showed that upward trends with fluctuation were observed for ambient O3 concentration, mortalities, and economic losses attributable to O3 exposure in the BTH Region from 2015 to 2020. The areas with high O3 concentration and great changes were concentrated in the central and southwestern regions, whereas the concentration in the northern region was low, and the change degree was small. The spatial distribution of the mortalities was also consistent with the spatial distribution of O3 concentration. From 2015 to 2020, the economic losses regarding all-cause mortality and cardiovascular mortality increased in 13 cities of the BTH Region, whereas the economic losses of respiratory mortality decreased in 4 cities in the BTH Region. The results indicated that the priority areas for O3 control were not uniform. Specifically, Beijing, Tianjin, Hengshui, and Xingtai were vital areas for O3 pollution control in the BTH Region. Differentiated control measures should be adopted based on the characteristics of these target areas to decline O3 concentration and reduce health impacts and economic losses associated with O3 exposure.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Pequim , Ozônio/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Material Particulado/análise , Monitoramento Ambiental/métodos , Cidades , China
2.
Environ Sci Technol ; 58(15): 6693-6703, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38577981

RESUMO

A major component of human skin oil is squalene, a highly unsaturated hydrocarbon that protects the skin from atmospheric oxidants. Skin oil, and thus squalene, is continuously replenished on the skin surface. Squalene is also quickly consumed through reactions with ozone and other oxidants. This study examined the extent of squalene depletion in the skin oils of the forearm of human volunteers after exposure to ozone in a climate chamber. Temperature, relative humidity (RH), skin coverage by clothing, and participants' age were varied in a controlled manner. Concentrations of squalene were determined in skin wipe samples collected before and after ozone exposure. Exposures to ozone resulted in statistically significant decreases in post-exposure squalene concentrations compared to pre-exposure squalene concentrations in the skin wipes when squalene concentrations were normalized by concentrations of co-occurring cholesterol but not by co-occurring pyroglutamic acid (PGA). The rate of squalene loss due to ozonolysis was lower than its replenishment on the skin surface. Within the ranges examined, temperature and RH did not significantly affect the difference between normalized squalene levels in post-samples versus pre-samples. Although not statistically significant, skin coverage and age of the volunteers (three young adults, three seniors, and three teenagers) did appear to impact squalene depletion on the skin surfaces.


Assuntos
Poluição do Ar em Ambientes Fechados , Ozônio , Humanos , Adolescente , Esqualeno/análise , Ozônio/análise , Poluição do Ar em Ambientes Fechados/análise , Pele/química , Oxidantes
3.
Environ Sci Technol ; 58(15): 6509-6518, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38561599

RESUMO

We aimed to evaluate the association between air pollutants and mortality risk in patients with acute aortic dissection (AAD) in a longitudinal cohort and to explore the potential mechanisms of adverse prognosis induced by fine particulate matter (PM2.5). Air pollutants data, including PM2.5, PM10.0, nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), and ozone (O3), were collected from official monitoring stations, and multivariable Cox regression models were applied. Single-cell sequencing and proteomics of aortic tissue were conducted to explore the potential mechanisms. In total, 1,267 patients with AAD were included. Exposure to higher concentrations of air pollutants was independently associated with an increased mortality risk. The high-PM2.5 group carried approximately 2 times increased mortality risk. There were linear associations of PM10, NO2, CO, and SO2 exposures with long-term mortality risk. Single-cell sequencing revealed an increase in mast cells in aortic tissue in the high-PM2.5 exposure group. Enrichment analysis of the differentially expressed genes identified the inflammatory response as one of the main pathways, with IL-17 and TNF signaling pathways being among the top pathways. Analysis of proteomics also identified these pathways. This study suggests that exposure to higher PM2.5, PM10, NO2, CO, and SO2 are associated with increased mortality risk in patients with AAD. PM2.5-related activation and degranulation of mast cells may be involved in this process.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Dissecção Aórtica , Ozônio , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Dióxido de Nitrogênio/análise , Proteômica , Material Particulado/análise , Ozônio/análise , Dióxido de Enxofre , Exposição Ambiental/análise , China
5.
Environ Monit Assess ; 196(5): 413, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565772

RESUMO

The health effects of air pollution remain a public concern worldwide. Using data from the Global Burden of Disease 2019 report, we statistically analyzed total mortality, disability-adjusted life years (DALY), and years of life lost (YLL) attributable to air pollution in eight East African countries between 1990 and 2019. We acquired ambient ozone (O3), PM2.5 concentrations and household air pollution (HAP) from the solid fuel from the State of Global Air report. The multilinear regression model was used to evaluate the predictability of YLLs by the air pollutants. We estimated the ratio rate for each health burden attributable to air pollution to compare the country's efforts in the reduction of air pollution health burden. This study found that the total number of deaths attributable to air pollution decreased by 14.26% for 30 years. The drop came from the reduction of 43.09% in mortality related to Lower Respiratory tract Infection (LRI). However, only five out of eight countries managed to decrease the total number of deaths attributable to air pollution with the highest decrease observed in Ethiopia (40.90%) and the highest increase in Somalia (67.49%). The linear regression model showed that HAP is the pollutant of the most concern in the region, with a 1% increase in HAP resulting in a 31.06% increase in regional YLL (R2 = 0.93; p < 0.05). With the increasing ground-level ozone, accompanied by the lack of adequate measures to reduce particulate pollutants, the health burdens attributable to air pollution are still a threat in the region.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Efeitos Psicossociais da Doença , Ozônio , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , População da África Oriental , Monitoramento Ambiental , Ozônio/análise , Material Particulado/análise
6.
Sci Rep ; 14(1): 8026, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580752

RESUMO

Air quality negatively impacts agriculture, reducing the yield of staple food crops. While measured data on African ground-level ozone levels are scarce, experimental studies demonstrate the damaging impact of ozone on crops. Common beans (Phaseolus vulgaris), an ozone-sensitive crop, are widely grown in Uganda. Using modelled ozone flux, agricultural surveys, and a flux-effect relationship, this study estimates yield and production losses due to ozone for Ugandan beans in 2015. Analysis at this scale allows the use of localised data, and results can be presented at a sub-regional level. Soil nutrient stress, drought, flood risk, temperature and deprivation were also mapped to investigate where stresses may coincide. Average bean yield losses due to ozone were 17% and 14% (first and second growing season respectively), equating to 184 thousand tonnes production loss. However, for some sub-regions, losses were up to 27.5% and other crop stresses also coincided in these areas. This methodology could be applied widely, allowing estimates of ozone impact for countries lacking air quality and/or experimental data. As crop productivity is below its potential in many areas of the world, changing agricultural practices to mitigate against losses due to ozone could help to reduce the crop yield gap.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Ozônio/efeitos adversos , Ozônio/análise , Uganda , Poluição do Ar/análise , Poluição Ambiental/análise , Agricultura , Produtos Agrícolas , Poluentes Atmosféricos/análise
7.
Environ Health ; 23(1): 35, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575976

RESUMO

BACKGROUND: An increasing number of studies suggest adverse effects of exposure to ambient air pollution on cognitive function, but the evidence is still limited. We investigated the associations between long-term exposure to air pollutants and cognitive function in the English Longitudinal Study of Ageing (ELSA) cohort of older adults. METHODS: Our sample included 8,883 individuals from ELSA, based on a nationally representative study of people aged ≥ 50 years, followed-up from 2002 until 2017. Exposure to air pollutants was modelled by the CMAQ-urban dispersion model and assigned to the participants' residential postcodes. Cognitive test scores of memory and executive function were collected biennially. The associations between these cognitive measures and exposure to ambient concentrations of NO2, PM10, PM2.5 and ozone were investigated using mixed-effects models adjusted for time-varying age, physical activity and smoking status, as well as baseline gender and level of education. RESULTS: Increasing long-term exposure per interquartile range (IQR) of NO2 (IQR: 13.05 µg/m3), PM10 (IQR: 3.35 µg/m3) and PM2.5 (IQR: 2.7 µg/m3) were associated with decreases in test scores of composite memory by -0.10 (95% confidence interval [CI]: -0.14, -0.07), -0.02 [-0.04, -0.01] and -0.08 [-0.11, -0.05], respectively. The same increases in NO2, PM10 and PM2.5 were associated with decreases in executive function score of -0.31 [-0.38, -0.23], -0.05 [-0.08, -0.02] and -0.16 [-0.22, -0.10], respectively. The association with ozone was inverse across both tests. Similar results were reported for the London-dwelling sub-sample of participants. CONCLUSIONS: The present study was based on a long follow-up with several repeated measurements per cohort participant and long-term air pollution exposure assessment at a fine spatial scale. Increasing long-term exposure to NO2, PM10 and PM2.5 was associated with a decrease in cognitive function in older adults in England. This evidence can inform policies related to modifiable environmental exposures linked to cognitive decline.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Humanos , Idoso , Estudos Longitudinais , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Material Particulado/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Ozônio/análise , Cognição , Envelhecimento
8.
Environ Sci Technol ; 58(12): 5430-5441, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38471097

RESUMO

The evaporative emissions of anthropogenic volatile organic compounds (AVOCs) are sensitive to ambient temperature. This sensitivity forms an air pollution-meteorology connection that has not been assessed on a regional scale. We parametrized the temperature dependence of evaporative AVOC fluxes in a regional air quality model and evaluated the impacts on surface ozone in the Beijing-Tianjin-Hebei (BTH) area of China during the summer of 2017. The temperature dependency of AVOC emissions drove an enhanced simulated ozone-temperature sensitivity of 1.0 to 1.8 µg m-3 K-1, comparable to the simulated ozone-temperature sensitivity driven by the temperature dependency of biogenic VOC emissions (1.7 to 2.4 µg m-3 K-1). Ozone enhancements driven by temperature-induced AVOC increases were localized to their point of emission and were relatively more important in urban areas than in rural regions. The inclusion of the temperature-dependent AVOC emissions in our model improved the simulated ozone-temperature sensitivities on days of ozone exceedance. Our results demonstrated the importance of temperature-dependent AVOC emissions on surface ozone pollution and its heretofore unrepresented role in air pollution-meteorology interactions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Compostos Orgânicos Voláteis , Ozônio/análise , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Temperatura , Monitoramento Ambiental/métodos , China
9.
Int J Epidemiol ; 53(2)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38553030

RESUMO

BACKGROUND: Over 120 million people in the USA live in areas with unsafe ozone (O3) levels. Studies among adults have linked exposure to worse lung function and higher risk of asthma and chronic obstructive pulmonary disease (COPD). However, few studies have examined the effects of O3 in children, and existing studies are limited in terms of their geographic scope or outcomes considered. METHODS: We leveraged a dataset of encounters at 42 US children's hospitals from 2004-2015. We used a one-stage case-crossover design to quantify the association between daily maximum 8-hour O3 in the county in which the hospital is located and risk of emergency department (ED) visits for any cause and for respiratory disorders, asthma, respiratory infections, allergies and ear disorders. RESULTS: Approximately 28 million visits were available during this period. Per 10 ppb increase, warm-season (May through September) O3 levels over the past three days were associated with higher risk of ED visits for all causes (risk ratio [RR]: 0.3% [95% confidence interval (CI): 0.2%, 0.4%]), allergies (4.1% [2.5%, 5.7%]), ear disorders (0.8% [0.3%, 1.3%]) and asthma (1.3% [0.8%, 1.9%]). When restricting to levels below the current regulatory standard (70 ppb), O3 was still associated with risk of ED visits for all-cause, allergies, ear disorders and asthma. Stratified analyses suggest that the risk of O3-related all-cause ED visits may be higher in older children. CONCLUSIONS: Results from this national study extend prior research on the impacts of daily O3 on children's health and reinforce the presence of important adverse health impacts even at levels below the current regulatory standard in the USA.


Assuntos
Asma , Ozônio , Criança , Humanos , Asma/epidemiologia , Saúde da Criança , Ozônio/efeitos adversos , Ozônio/análise , Estações do Ano , Estudos Cross-Over
10.
Eur Thyroid J ; 13(2)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471306

RESUMO

Global warming is now universally acknowledged as being responsible for dramatic climate changes with rising sea levels, unprecedented temperatures, resulting fires and threatened widespread species loss. While these effects are extremely damaging, threatening the future of life on our planet, one unexpected and paradoxically beneficial consequence could be a significant contribution to global iodine supply. Climate change and associated global warming are not the primary causes of increased iodine supply, which results from the reaction of ozone (O3) arising from both natural and anthropogenic pollution sources with iodide (I-) present in the oceans and in seaweeds (macro- and microalgae) in coastal waters, producing gaseous iodine (I2). The reaction serves as negative feedback, serving a dual purpose, both diminishing ozone pollution in the lower atmosphere and thereby increasing I2. The potential of this I2 to significantly contribute to human iodine intake is examined in the context of I2 released in a seaweed-abundant coastal area. The bioavailability of the generated I2 offers a long-term possibility of increasing global iodine status and thereby promoting thyroidal health. It is hoped that highlighting possible changes in iodine bioavailability might encourage the health community to address this issue.


Assuntos
Iodo , Ozônio , Alga Marinha , Humanos , Mudança Climática , Oceanos e Mares , Ozônio/análise , Atmosfera
11.
Sci Rep ; 14(1): 5997, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472290

RESUMO

When analyzing health data in relation to environmental stressors, it is crucial to identify which variables to include in the statistical model to exclude dependencies among the variables. Four meteorological parameters: temperature, ultraviolet radiation, precipitation, and vapor pressure and four outdoor air pollution parameters: ozone ( O 3 ), nitrogen dioxide ( NO 2 ), particulate matter ( P M 2.5 , P M 10 ) were studied on a daily basis for Baden-Württemberg (Germany). This federal state covers urban and rural compartments including mountainous and river areas. A temporal and spatial analysis of the internal relationships was performed among the variables using (a) cross-correlations, both on the grand ensemble of data as well as within subsets, and (b) the Local Indications of Spatial Association (LISA) method. Meteorological and air pollution variables were strongly correlated within and among themselves in time and space. We found a strong interaction between nitrogen dioxide and ozone, with correlation coefficients varying over time. The coefficients ranged from negative correlations in January (-0.84), April (-0.47), and October (-0.54) to a positive correlation in July (0.45). The cross-correlation plot showed a noticeable change in the correlation direction for O 3 and NO 2 . Spatially, NO 2 , P M 2.5 , and P M 10 concentrations were significantly higher in urban than rural regions. For O 3 , this effect was reversed. A LISA analysis confirmed distinct hot and cold spots of environmental stressors. This work examined and quantified the spatio-temporal relationship between air pollution and meteorological conditions and recommended which variables to prioritize for future health impact analyses. The results found are in line with the underlying physico-chemical atmospheric processes. It also identified postal code areas with dominant environmental stressors for further studies.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Raios Ultravioleta , Poluição do Ar/análise , Material Particulado/análise , Ozônio/análise , Monitoramento Ambiental/métodos
12.
Int J Epidemiol ; 53(2)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38514998

RESUMO

BACKGROUND: A growing body of evidence has reported positive associations between long-term exposure to air pollution and poor COVID-19 outcomes. Inconsistent findings have been reported for short-term air pollution, mostly from ecological study designs. Using individual-level data, we studied the association between short-term variation in air pollutants [nitrogen dioxide (NO2), particulate matter with a diameter of <2.5 µm (PM2.5) and a diameter of <10 µm (PM10) and ozone (O3)] and hospital admission among individuals diagnosed with COVID-19. METHODS: The COVAIR-CAT (Air pollution in relation to COVID-19 morbidity and mortality: a large population-based cohort study in Catalonia, Spain) cohort is a large population-based cohort in Catalonia, Spain including 240 902 individuals diagnosed with COVID-19 in the primary care system from 1 March until 31 December 2020. Our outcome was hospitalization within 30 days of COVID-19 diagnosis. We used individual residential address to assign daily air-pollution exposure, estimated using machine-learning methods for spatiotemporal prediction. For each pandemic wave, we fitted Cox proportional-hazards models accounting for non-linear-distributed lagged exposure over the previous 7 days. RESULTS: Results differed considerably by pandemic wave. During the second wave, an interquartile-range increase in cumulative weekly exposure to air pollution (lag0_7) was associated with a 12% increase (95% CI: 4% to 20%) in COVID-19 hospitalizations for NO2, 8% (95% CI: 1% to 16%) for PM2.5 and 9% (95% CI: 3% to 15%) for PM10. We observed consistent positive associations for same-day (lag0) exposure, whereas lag-specific associations beyond lag0 were generally not statistically significant. CONCLUSIONS: Our study suggests positive associations between NO2, PM2.5 and PM10 and hospitalization risk among individuals diagnosed with COVID-19 during the second wave. Cumulative hazard ratios were largely driven by exposure on the same day as hospitalization.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Ozônio , Humanos , Espanha/epidemiologia , Estudos de Coortes , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Teste para COVID-19 , COVID-19/epidemiologia , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Ozônio/efeitos adversos , Ozônio/análise , Hospitalização , Hospitais , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
13.
Sci Total Environ ; 923: 171544, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453062

RESUMO

There has been a consistent upward trend in ground-level ozone (O3) concentration in China. People living with HIV (PLWH) may be more vulnerable to the health impacts of O3 exposure due to their immunosuppressed state. This study aims to investigate the association between ambient O3 exposure and mortality among PLWH, as well as the potential exacerbating effects of a decreased CD4+ T cell level. Daily maximum 8-hour O3 concentrations were assigned to 7270 PLWH at a county level in Guangxi, China. Every 10-unit increase in ambient O3 concentration was associated with a significant rise in all-cause mortality ranging from 7.3 % to 28.7 % and a significant rise in AIDS-related mortality ranging from 8.4 % to 14.5 %. When PLWH had a higher CD4+ count (≥350 cells/µL), elevated O3 concentration was associated with increased blood CD4+ count at lag0 [percent change with 95 % confidence interval, 0.20(0.00, 0.40)], lag1 [0.26(0.06, 0.47)], and lag2 [0.23(0.03, 0.44)]; however, an opposite association was observed when CD4+ count was <350 cells/µL for half-year average [-2.45(-4.71, -0.14)] and yearly average [-3.42(-5.51, -1.29)] of O3 exposure. The association of O3 exposure with all-cause and AIDS-related mortality was more prominent among those with higher CD4+ count. Exploratory analysis revealed possible associations between O3 exposure and respiratory infections and clinical symptoms. These findings suggest potential synergistic effects between a compromised immune status and elevated O3 exposure levels on mortality risk among PLWH. Ambient O3 exposure should be considered as an emerging mortality risk factor for PLWH in the era of antiretroviral therapy, requiring further attention from researchers and healthcare professionals.


Assuntos
Síndrome de Imunodeficiência Adquirida , Poluentes Atmosféricos , Poluição do Ar , Ozônio , Humanos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Estudos Longitudinais , Linfócitos T , China/epidemiologia , Ozônio/efeitos adversos , Ozônio/análise , Linfócitos T CD4-Positivos/química , Exposição Ambiental/análise , Material Particulado/análise
14.
Glob Chang Biol ; 30(3): e17215, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429894

RESUMO

Tropospheric ozone (O3 ) threatens agroecosystems, yet its long-term effects on intricate plant-microbe-soil interactions remain overlooked. This study employed two soybean genotypes of contrasting O3 -sensitivity grown in field plots exposed elevated O3 (eO3 ) and evaluated cause-effect relationships with their associated soil microbiomes and soil quality. Results revealed long-term eO3 effects on belowground soil microbiomes and soil health surpass damage visible on plants. Elevated O3 significantly disrupted belowground bacteria-fungi interactions, reduced fungal diversity, and altered fungal community assembly by impacting soybean physiological properties. Particularly, eO3 impacts on plant performance were significantly associated with arbuscular mycorrhizal fungi, undermining their contribution to plants, whereas eO3 increased fungal saprotroph proliferation, accelerating soil organic matter decomposition and soil carbon pool depletion. Free-living diazotrophs exhibited remarkable acclimation under eO3 , improving plant performance by enhancing nitrogen fixation. However, overarching detrimental consequences of eO3 negated this benefit. Overall, this study demonstrated long-term eO3 profoundly governed negative impacts on plant-soil-microbiota interactions, pointing to a potential crisis for agroecosystems. These findings highlight urgent needs to develop adaptive strategies to navigate future eO3 scenarios.


Assuntos
Microbiota , Micorrizas , Ozônio , Solo/química , Ozônio/efeitos adversos , Ozônio/análise , Microbiologia do Solo , Soja
15.
Environ Pollut ; 348: 123837, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537793

RESUMO

High Ozone Production Rate (OPR) leads to O3 pollution episodes and adverse human health outcomes. OPR observation (Obs-OPR) and OPR modelling (Mod-OPR) have been obtained from observed and modelled peroxy radicals and nitrogen oxides. However, discrepancies between them remind of an imperfect understanding of O3 photochemistry. Direct measurement of OPR (Mea-OPR) by a twin-chamber system emerges. Herein, we optimized Mea-OPR design, i.e., minimizing the chamber surface area to volume ratio (S/V) to 9.8 m-1 from 18 m-1 and the dark uptake coefficient of O3 to 9.9 × 10-9 from 7.1 × 10-8 in the literature. In addition, control experiments further revealed and quantified a photo-enhanced O3 uptake, and therefore recommended an essential correction of Mea-OPR. We finally characterized a measurement uncertainty of ±38% and a detection limit of 3.2 ppbv h-1 (3SD), which suggested that Mea-OPR would be sensitive enough to measure OPR in urban or suburban environments. Further application of this system in urban Beijing during the Beijing 2022 Olympic Winter Games recorded a noontime OPR of 7.3 (±3.3, 1SD) ppbv h-1. These observational results added up to our confidence in future field application of Mea-OPR, to facilitate pollution control policy evaluation and to shed light on O3 photochemistry puzzle.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Humanos , Ozônio/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Poluição Ambiental/análise , Óxidos de Nitrogênio/análise , China , Compostos Orgânicos Voláteis/análise
16.
Environ Pollut ; 348: 123748, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460592

RESUMO

Surface ozone (O3) is a crucial air pollutant that affects air quality, human health, agricultural production, and climate change. Studies on long-term O3 variations and their influencing factors are essential for understanding O3 pollution and its impact. Here, we conducted an analysis of long-term variations in O3 during 2006-2022 at the Longfengshan Regional Atmosphere Background Station (LFS; 44.44°N, 127.36°E, 330.5 m a.s.l.) situated on the northeastern edge of the Northeast China Plains. The maximum daily 8-h average (MDA8) O3 fluctuated substantially, with the annual MDA8 decreasing significantly during 2006-2015 (-0.62 ppb yr-1, p < 0.05), jumping during 2015-2016 and increasing clearly during 2020-2022. Step multiple linear regression models for MDA8 were obtained using meteorological variables, to decompose anthropogenic and meteorological contributions to O3 variations. Anthropogenic activities acted as the primary drivers of the long-term trends of MDA8 O3, contributing 73% of annual MDA8 O3 variability, whereas meteorology played less important roles (27%). Elevated O3 at LFS were primarily associated with airflows originating from the North China Plain, Northeast China Plain, and coastal areas of North China, primarily occurring during the warm months (May-October). Based on satellite products of NO2 and HCHO columns, the O3 photochemical regimes over LFS revealed NOx-limited throughout the period. NO2 increased first, reaching peak in 2011, followed by substantial decrease; while HCHO exhibited significant increase, contributing to decreasing trend in MDA8 O3 during 2006-2015. The plateauing NO2 and decreasing HCHO may contribute to the increase in MDA8 O3 in 2016. Subsequently, both NO2 and HCHO exhibited notable fluctuations, leading to significant changes in O3. The study results fill the gap in the understanding of long-term O3 trends in high-latitude areas in the Northeast China Plain and offer valuable insights for assessing the impact of O3 on crop yields, forest productivity, and climate change.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Humanos , Ozônio/análise , Dióxido de Nitrogênio/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Atmosfera/análise , China
17.
Reprod Toxicol ; 125: 108582, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38556115

RESUMO

The objective of this meta-analysis is to investigate the association between air pollution and the vulnerability of children to autism spectrum disorders (ASD). A thorough examination and analysis of data obtained from a compilation of 14 studies was undertaken, with a particular emphasis on investigating the effects of nitrogen dioxide (NO2), oxide of nitrogen (NOx), ozone (O3), and particulate matter (PM10 and PM2.5) on individuals diagnosed with ASD. The findings demonstrate a moderate association between exposure to nitrogen dioxide (NO2) and ASD, as indicated by a combined odds ratio (OR) of 1.13 and a 95% confidence interval (CI) spanning from 0.77 to 1.549. O3 shows a combined odds ratio (OR) of 0.82, along with a 95% confidence interval (CI) ranging from 0.49 to 1.14. NOx shows a moderate level of heterogeneity (I² = 75.9%, p = 0.002), suggesting that the impact of NOx on the risk of ASD. There is a statistically significant relationship between exposure to O3 and ASD, although the strength of this relationship is diminished. The findings demonstrated a noteworthy correlation between exposure to PM10 and PM2.5 and the occurrence of ASD. The study found a significant correlation, in relation to PM2.5, with a combined odds ratio (OR) of 1.22 and a 95% confidence interval (CI) ranging from 1.11 to 1.34. The findings have significant implications for the formulation of programs aimed at reducing exposure to harmful chemicals, especially among vulnerable groups such as children.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Transtorno do Espectro Autista , Ozônio , Criança , Humanos , Dióxido de Nitrogênio/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/etiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Ozônio/efeitos adversos , Ozônio/análise
18.
Environ Sci Pollut Res Int ; 31(17): 25406-25423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472578

RESUMO

This study assessed the air quality status in different functional zones of Dhanbad-a coal-mining and industrial hub, based on the measurement of aromatic and halogenated volatile organic compounds (VOCs) using gas chromatography. The study encompasses source apportionment of VOCs and their chemical reactivity in terms of OH radical loss rate (LOH), ozone-forming potential (OFP), and their secondary organic aerosol forming potential (SOAp). Furthermore, prioritization of VOCs based on a fuzzy-analytical hierarchical process (F-AHP) has also been done. The results found xylene species to have the highest concentration in all three seasons across traffic-intersection and industrial zones and toluene at the institutional zone. The study identified four sources using positive matrix factorization (PMF) model, viz., mixed traffic exhaust (35%), coal combustion sources (30%), industrial (26%), and solvent usage (9%). LOH and SOAp were ~ 16 times more at the industrial and traffic-intersection zone than the institutional zone. The aromatic species contributed 97% to the OFP, and many species exhibited less contribution to the mixing ratio of VOCs but displayed a high contribution to LOH, OFP, and SOAp, suggesting the need to prefer reactivity-based strategies in addition to concentration-based strategies in the future for their regulation. The F-AHP-based priority component analysis identified 16 species out of 29 in the priority watch list (nine in tier-1, four in tier-2, and three in tier-3). The paucity of data and lack of ambient air quality standards on VOCs (except benzene) make it difficult to determine which aspect should be dealt with first and which species require more attention. Therefore, the F-AHP method used in this study could help identify the influencing parameters to be considered while devising efficient VOC management policies.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/análise , Sabões/análise , Monitoramento Ambiental , Emissões de Veículos/análise , Ozônio/análise , Índia , Aerossóis/análise , Carvão Mineral/análise , Mineração , China
19.
Environ Int ; 185: 108533, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430585

RESUMO

BACKGROUND: The potential effects of short-term exposure to major ambient gaseous pollutants (ozone: O3, carbon monoxide: CO, and sulfur dioxide: SO2) on platelet mitochondrial DNA (mtDNA) methylation have been uncertain and no studies have examined whether platelet mtDNA methylation levels could modify the associations between ambient gaseous pollutants and the risks of ST-segment depression (STDE) and T-wave inversion events (TIE), two indicators of myocardial ischemia. METHODS: This study used data from a randomized, double-blind, placebo-controlled intervention study with a standardized 24-hour exposure protocol among 110 participants in Beijing. Absolute changes in platelet mtDNA methylation (ACmtDNAm) levels were determined by two repeated measurements on platelet mtDNA methylation levels in blood samples collected before and after the 24-hour exposure period. A multivariable linear regression model and a generalized linear model with a Poisson link function were used to investigate the associations of ambient gaseous pollutants with platelet mtDNA methylation levels, STDE, and TIE, respectively. RESULTS: Short-term O3 exposure was significantly associated with decreased ACmtDNAm at ATP6_P1 but increased ACmtDNAm at mt12sRNA, MT-COX1, and MT-COX1_P2; short-term CO and SO2 exposures were significantly associated with decreased ACmtDNAm at D-loop, MT-COX3- and ATP-related genes. Moreover, short-term O3 exposure was significantly associated with increased risks of STDE and TIE, and ACmtDNAm at MT-COX1 and MT-COX1_P2 modified the association between short-term O3 exposure and STDE events. L-Arg supplementation attenuated the effects of ambient gaseous pollutants, particularly O3, on ACmtDNAm and STDE. CONCLUSIONS: Platelet mtDNA methylation levels are promising biomarkers of short-term exposure to ambient gaseous air pollution, and are likely implicated in the mechanism behind the association of ambient O3 pollution with adverse cardiovascular effects. L-Arg supplementation showed the potential to mitigate the adverse effects of ambient O3 pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Isquemia Miocárdica , Ozônio , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Plaquetas , DNA Mitocondrial , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Metilação , Dióxido de Nitrogênio/análise , Ozônio/análise , Material Particulado/análise , Ensaios Clínicos Controlados Aleatórios como Assunto
20.
Sci Total Environ ; 924: 171561, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38458472

RESUMO

Ambient ozone (O3) is recognized as a significant air pollutant with implications for cardiorespiratory health, yet the effects of indoor O3 exposure have received less consideration. Furthermore, while sleep occupies one-third of life, research on the health consequences of O3 exposure during this crucial period is scarce. This study aimed to investigate associations of indoor O3 during sleep with cardiorespiratory function and potential predisposing factors. A prospective study among 81 adults was conducted in Beijing, China. Repeated measurements of cardiorespiratory indices reflecting lung function, airway inflammation, cardiac autonomic function, blood pressure, systemic inflammation, platelet and glucose were performed on each subject. Real-time concentrations of indoor O3 during sleep were monitored. Associations of O3 with cardiorespiratory indices were evaluated using linear mixed-effect model. Effect modification by baseline lifestyles (diet, physical activity, sleep-related factors) and psychological status (stress and depression) were investigated through interaction analysis. The average indoor O3 concentration during sleep was 20.3 µg/m3, which was well below current Chinese indoor air quality standard of 160 µg/m3. O3 was associated with most respiratory indicators of decreased airway function except airway inflammation; whereas the cardiovascular effects were only manifested in autonomic dysfunction and not in others. An interquartile range increases in O3 at 6-h average was associated with changes of -3.60 % (95 % CI: -6.19 %, -0.93 %) and -9.60 % (95 % CI: -14.53 %, -4.39 %) in FVC and FEF25-75, respectively. Further, stronger effects were noted among participants with specific dietary patterns, poorer sleep and higher level of depression. This study provides the first general population-based evidence that low-level exposure to indoor O3 during sleep has greater effects on the respiratory system than on the cardiovascular system. Our findings identify the respiratory system as an important target for indoor O3 exposure, and particularly highlight the need for greater awareness of indoor air quality, especially during sleep.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Adulto , Humanos , Poluição do Ar/análise , Estudos Prospectivos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Ozônio/efeitos adversos , Ozônio/análise , China , Inflamação , Material Particulado/análise , Exposição Ambiental/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...